On the existence of infinitely many periodic solutions for second-order ordinary $p$-Laplacian systems
نویسندگان
چکیده
منابع مشابه
Infinitely many periodic solutions for some second-order differential systems with p(t)-Laplacian
* Correspondence: [email protected] School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, P. R. China Abstract In this article, we investigate the existence of infinitely many periodic solutions for some nonautonomous second-order differential systems with p(t)-Laplacian. Some multiplicity results are obtained using critical point theory. 2...
متن کاملINFINITELY MANY HOMOCLINIC ORBITS OF SECOND-ORDER p-LAPLACIAN SYSTEMS
In this paper, we give several new sufficient conditions for the existence of infinitely many homoclinic orbits of the second-order ordinary p-Laplacian system d dt (|u̇(t)|p−2u̇(t)) − a(t)|u(t)|p−2u(t) +∇W (t, u(t)) = 0, where p > 1, t ∈ R, u ∈ R , a ∈ C(R,R) and W ∈ C(R × R ,R) are no periodic in t, which greatly improve the known results due to Rabinowitz and Willem.
متن کاملExistence of Infinitely Many Periodic Solutions for Second-order Nonautonomous Hamiltonian Systems
By using minimax methods and critical point theory, we obtain infinitely many periodic solutions for a second-order nonautonomous Hamiltonian systems, when the gradient of potential energy does not exceed linear growth.
متن کاملExistence results of infinitely many solutions for a class of p(x)-biharmonic problems
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
متن کاملInfinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator
By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin
سال: 2012
ISSN: 1370-1444
DOI: 10.36045/bbms/1331153413