On the existence of infinitely many periodic solutions for second-order ordinary $p$-Laplacian systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely many periodic solutions for some second-order differential systems with p(t)-Laplacian

* Correspondence: [email protected] School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, P. R. China Abstract In this article, we investigate the existence of infinitely many periodic solutions for some nonautonomous second-order differential systems with p(t)-Laplacian. Some multiplicity results are obtained using critical point theory. 2...

متن کامل

INFINITELY MANY HOMOCLINIC ORBITS OF SECOND-ORDER p-LAPLACIAN SYSTEMS

In this paper, we give several new sufficient conditions for the existence of infinitely many homoclinic orbits of the second-order ordinary p-Laplacian system d dt (|u̇(t)|p−2u̇(t)) − a(t)|u(t)|p−2u(t) +∇W (t, u(t)) = 0, where p > 1, t ∈ R, u ∈ R , a ∈ C(R,R) and W ∈ C(R × R ,R) are no periodic in t, which greatly improve the known results due to Rabinowitz and Willem.

متن کامل

Existence of Infinitely Many Periodic Solutions for Second-order Nonautonomous Hamiltonian Systems

By using minimax methods and critical point theory, we obtain infinitely many periodic solutions for a second-order nonautonomous Hamiltonian systems, when the gradient of potential energy does not exceed linear growth.

متن کامل

Existence results of infinitely many solutions for a class of p(x)-biharmonic problems

The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.

متن کامل

Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator

By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin

سال: 2012

ISSN: 1370-1444

DOI: 10.36045/bbms/1331153413